LIST OF TABLES

Table <u>Number</u>	<u>Title</u>	<u>Page</u>
5-1a	Summary of Monitoring Well Data at the Mine Site	5-8
5-1b	Analytical Results for Private Water Supplies Sampled	B-1
5-2	Summary of Surface Sampling for Waste Rock Remaining After Early Actions	B-2
5-3	Summary of West Fork Tailings Impoundment Soil Sampling	B-3
5-4	Summary of Lower Bucktail Debirs-Flow Sampling for Deposits Remaining After Early Actions	B-4
5-5	Summary of Overbank Sampling for Deposits Remaining Along Blackbird and Big Deer Creeks After Early Actions	B-5
5-6	Summary of Sampling for Other Soils	B-6
5-7	Comparison of Golder 1995 and 2000 Sediment Metal Concentrations (HCl/HNO ₃ Digestion)	B-7
5-8	Comparison of Sediment Total Metal Concentrations to PRG's	B -8
5-9	Summary of Periodic Sampling Results for Cobalt in Blackbird Creek (BBSW-01A) and Panther Creek (PASW-09)	B-9
5-10	Summary of Surface Water Reference Station Exposure Point Concentrations (mg/L) by Creek	B-10
5-11	Summary of 95% Upper Tolerance Levels for Background Sediment Data	B-11
5-12	Selected Summary of Pre-RI Background Soil Concentration Data	B-12
5-13	Background Soil Concentration Data Collected During the RI	B-12
5-14	Background Samples - Panther Creek Overbank Deposits	B-13

LIST OF TABLES (continued)

Table <u>Number</u>	<u>Title</u>	<u>Page</u>
7-1	Surface Soil/Mine Wastes Exposure Assumptions	B-14
7-2	Sediment Exposure Assumptions	B-15
7-3	Surface Water Exposure Assumptions	B-16
7-4	Surface Soil/Mine Wastes Exposure Point Concentrations	B-17
7-5	Sediment Exposure Point Concentrations	B-18
7-6	Survace Water Exposure Point Concentrations	B-19
7-7	Risk Characterization Summary - Surface Soil/Mine Wastes	B-20
7-8	Summary of Risk Calculations - Sediment	B-21
7-9	Summary of Risk Calculations - Surface Water	B-22
7-10	Summary of Cumulative Risk Assessments Results (Surface Soil/Mine Wastes, Sediment and Surface Water)	B-23
7-11	Surface Water TRVs	7-13
7-12	Sediment Toxicity Reference Value (TRV) Selection	7-14
7-13	Summary of Areas of Unacceptable Risk	7-20
8-1	Remedial Action Objectives for Blackbird Site	8-2
8-2	Recreational Exposure Factors	B-24
8-3	Hardness-dependent Aquatic Life Criteria for Dissolved Copper in Idaho	8-9
8-4	Criteria Calculated Over a Range of Hardness Values That Commonly Occur in the Blackbird Mine Site	8-10

LIST OF TABLES (continued)

Number	<u>Title</u>	<u>Page</u>
8-5	Summary of Salmonid Cobalt TRVs	8-11
8-6	Sediment Cleanup Levels for Big Deer and Panther Creeks	8-14
8-7	Sediment Cleanup Levels for South Fork of Big Deer Creek	8-14
8-8	Summary of Sediment and Surface Water Health and Aquatic Life Cleanup Levels by Drainage	8-15
10-1	Evaluation Summary for Blackbird Creek Alternatives	B-25
10-2	Evaluation Summary for Bucktail Creek Alternatives	B-26
10-3	Evaluation Summary for Panther Creek Alternatives	B-27
10-4	Summary of Estimated Alternative Costs	B-28
12-1	Estimated Cost for Alternative BB-7a	B-29
12-2	Estimated Cost for Alternative BB-7b	B-30
12-3	Estimated Cost for Alternative BB-7c	B-31
12-4	Estimated Cost for Altlemative BT-5	B-32
12-5	Estimated Cost for Combined Alternatives P-2/P-3	B-33

ABBREVIATIONS AND SYMBOLS

AERA	Aquatic Ecological Risk Assessment	-
AOC	Administrative Order on Consent	
ARAR	Applicable or Relevant and Appropriate Requirement	_
ARD	Acid Rock Drainage	_
AWQC	Ambient Water Quality Criteria	
bgs	Below ground surface	_
BMP	Best Management Practices	
BMSG	Blackbird Mine Site Group	
BRCP	Biological Restoration and Compensation Plan	
CCC	Criteria Continuous Concentration (chronic criteria)	
CERCLA	Comprehensive Environmental, Response, Compensation, and Liability Act	
CFR	Code of Federal Regulations	_
cfs	Cubic feet per second	
CMC	Criteria Maximum Concentration (acute criteria)	
COC	Chemical of Concern	_
COPEC	Chemical of Potential Ecological Concern	
CRP	Community Relations Plan	
CSM	Conceptual Site Model	_
CWA	Clean Water Act	
су	Cubic Yards	
DEQ	Department of Environmental Quality	
EIS	Environmental Impact Statement	
EPA	U.S. Environmental Protection Agency	_
EPC	Exposure Point Concentration	
ESA	Endangered Species Act	
ESD	Explanation of Significant Difference	_
ESV	Ecological Screening Value	
FS	Feasibility Study	
gpm	gallons per minute	_
HEAST	Health Affects Assessment Summary Table	
HI	Hazard Index	
HHRA	Human Health Risk Assessment	
HQ	Hazard Quotient	
HR	Home range	
IC	Institutional Controls	
IDEQ	Idaho Department of Environmental Quality	
IRIS	Integrated Risk Information System	_

ABBREVIATIONS AND SYMBOLS (continued)

IWQS Idaho Water Quality Standard

LOAEL Lowest observed adverse effect level

MCL Maximum Contaminant Level MBTA Migratory Bird Treaty Act

NCEA National Center for Environmental Assessment

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NEPA National Environmental Policy Act NMFS National Marine Fisheries Service

NOAA National Oceanic and Atmospheric Administration

NOEC No observed effect concentration NOAEL No observed adverse effect level

NPDES National Pollutant Discharge Elimination System

NRDA Natural Resource Damage Assessment

O&M Operation and Maintenance

PCI Panther Creek Inn

PEC Probable effects concentration
PRP Potentially Responsible Party

PRG Preliminary Remediation Goal or Preliminary Removal Goal

RA Risk Assessment

RAO Remedial Action Objective

RfD Reference Dose

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

RME Reasonable Maximum Exposure

ROC Receptor of Concern ROD Record of Decision

SARA Superfund Amendments and Reauthorization Act of 1986

SDWA Safe Drinking Water Act

SF Slope Factor

SRB Sulfate-reducing bacteria

TERA Terrestrial Ecological Risk Assessment

TEC Threshold Effects Concentration

TEL Threshold Effects Level
TOC Total organic carbon
TRV Toxicity Reference Value
UAA Use Attainability Analysis
UCL Upper Confidence Limit
UTL Upper Tolerance Level

USFWS United States Fish & Wildlife Service USGS United States Geological Survey

ABBREVIATIONS AND SYMBOLS (continued)

WQS	Water quality standard
WTP	Wastewater Treatment Plant
XRF	X-ray fluorescence

TABLE_5-1b

ANALYTICAL RESULTS FOR PRIVATE WATER SUPPLIES SAMPLED

Parameters	Date	06/26/9	09/18/0	09/18/0	09/22/95	09/22/9	09/22/9	09/22/95
	Location	5	2 PCI	2 PCI	GEORGE	5	5	WARBARTO
		PCI Well	Well No.	Well No.	FERNANDEZ	SILLING	SILLING	N
•	Id Number	No. 1	1	2	952327	s	s	
	Filt/Unfiltere	950245			U	CABIN	HOUSE	952324
	Units							
LAB								
Alkalinity	μg/L as		15300	47600		123000	124000	82000
Aluminum	μg/L				63.3 B	41.6 B	38.4 B	20.4 U
Arsenic	μg/L	3 BJ	2	16	77.8	1.5 U	1.5 U	22.8
Calcium	μg/L		18900	20900	23400	40300	41300	21800
Chloride	μg/L		5200	10000		2480	2470	2900
Cobalt	μg/L	244	290	208	11.5 B	4.9 U	4.9 U	4.9 U
Copper	μg/L	18.6 B	22	35	0.6 U	0.6 U	0.69 B	3.1 B
Iron	μg/L		40	3700	85.2 B	100	116	16.5 U
Magnesium	μg/L		5880	5580	3620 B	5570	5700	4760 B
Manganese	μg/L	10.7 B	3	2120	1.1 U	4.3 U	6.5 U	4.8 U
Nickel	μg/L	11.7 U			14.4 U	14.4 U	14.4 U	14.4 U
Potassium	μg/L		3900	5900	2290 B	4960 B	5010	2400 B
Silicon	μg/L				7800 J	6140 J	6400 J	4020 J
Sodium	μg/L		3400	5900	7170	5650	5740	6940
Sulfate	μg/L		62600	43600		18400	18300	11500
Total Dissolved Solids	μg/L		156000	151000		129000	142000	76000
Total Suspended	μg/L		500	3500		1400	1300	100 U
FIELD								-
Conductivity	μS/cm	210	130	159		260		178
Dissolved Oxygen	mg/L	13.4	6.06	6.2		10.9		1.96
pН	Std Unit	6.17	6.87	6.53		7.64		7.85
Temperature	°C	13.5	12.7	10.4		8.1		11.6
Turbidity	NTU	2	2	5		1		

B = Analyte detected at a value between the minimum detection limit and the practical quantitation limit

Note: Blanks indicate analysis for the parameter was not performed.

J = Estimated value

U = Non-detect

TABLE 5-2
SUMMARY OF SURFACE SAMPLING FOR WASTE ROCK REMAINING AFTER EARLY ACTIONS

			Cop	oper		Cobalt ³				Arsenic			
Location	Number of Samples	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)
Haynes-Stellite Area	14	21.0	324.0	130.2	122.5	20.0	3210.0	361.4	177.5	6.1	5550.0	568.9	129.5
Upper Meadow Creek Drainage - 7300 WRD and 7400 WRD	3	830.0	2450.0	1460.0	1100.0	.•	· •	•	-	660.0	1290.0	880.0	690.0
Meadow Creek North End - 7700 WRD 5	4	200.0	1400.0	750.0	700.0	-	-	-	-	75.0	940.0	291.3	75.0
Meadow Creek West Side - 7800 WRD	50	200.0	20200.0	1905.8	875.0	-	-	-	-	75.0	5900.0	956.1	475.5
Bucktail Drainage - Remaining West Lobe	16	660.0	2700.0	1738.1	1850.0		990.0	-	-	75.0	2200.0	1251.6	1155.0
Bucktail Drainage - East Slope WRD	40	200.0	13000.0	1754.0	1300.0	-	1050.0	-	-	75.0	3200.0	843.6	730.0
7117 WRD	14	200.0	7370.0	1355.0	735.0	•	-		-	75.0	3160.0	484.1	147.5
7265 WRD	4	430.0	4030.0	1475.0	720.0			-		75.0	939.0	414.8	322.5

- 1. WRD = Waste Rock Dump
- 2. Non-detect results were set to a value equal to half the detection limit (detection limits varied from data set to data set).
- 3. Aside from the Haynes-Stellite Area, most samples tested below the XRF detection limit for cobalt. A "-" indicates that all samples in the area tested below the detection limit.
- 4. Data compiled from Golder (1996d), Golder (1996f), Golder (1997d), and Beltman et. al. (1993)
- 5. Many samples had arsenic concentrations below the XRF detection limits; therefore, the median and minimum reflect one-half the detection limit.

]

μ.

]

Table 5-3
Summary of West Fork Tailings Impoundment Soil Sampling

Location	As (mg/kg)	Cu (mg/kg)	Fe (mg/kg)	S (mg/kg)
West Fork Transect 1 (Composite of Samples 1-4)	554	640	39900	ND
West Fork Transect 2 (Composite of Samples 5-8)	389	410	34100	ND
West Fork Transect 3 (Composite of Samples 9-12)	298	171	16800	ND
West Fork Transect 4 (Composite of Samples 13-16)	273	182	24500	ND
West Fork Transect 5 (Composite of Samples 17-20)	533	650	33700	ND

Note: Four discreet samples were collected for each transect and analyzed with XRF

TABLE 5-4
SUMMARY OF LOWER BUCKTAIL DEBRIS-FLOW SAMPLING FOR DEPOSITS REMAINING AFTER EARLY ACTIONS

			Copper			Cobalt 1				Arsenic			
Location	Number of Samples	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)
Lower Bucktail													
Between Upper and Lower Sediment Dams	80	265.0	14690.0	3921.6	2756.5	125.0	1429.0	183.4	125.0	46.0	1205.0	650.0	807.5

- 1. Most of the samples tested below the detection limit for cobalt; therefore, the minimum, mean, and median reflect this result.
- 2. Data from Golder (1995h) and Golder (1997c).
- 3. Non-detect results were set to a value equal to half the detection limit (detection limits varied from data set to data set).

B-4

]

Table 5-4.xls

After Golder Associates

TABLE 5-5

SUMMARY OF OVERBANK SAMPLING FOR DEPOSITS REMAINING ALONG BLACKBIRD AND BIG DEER CREEKS AFTER EARLY ACTIONS ¹

			Cop	per			Col	oalt			Arse	enic	
	Number of	Min	Max	Mean	Median	Min	Max	Mean	Median	Min	Max	Mean	Median
Location	Samples	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Big Deer Creek													
Big Deer Creek (Table 5- 35 of this RI) ²	17	49.8	17200.0	2069.8	654.0	15.2	619.0	129.7	53.4	7.0	72.3	25.1	19.6
Big Deer Creek (Golder 1996d) ^{3, 4, 6, 7}	18	150.0	4500.0	1990.3	2050.0	152.5	750.0	-	750.0	75.0	268.0	128.9	.75.0
South Fork of Big Deer Creek (Golder 1996d) ^{3, 4}	7	2100.0	42000.0	11137.5	7450.0	750.0	1600.0	856.3	750.0	75.0	820.0	558.1	605.0
Blackbird Creek (from th	e base of 68	350 Waste	Rock Du	mp to jus	t north o	f Panther	Creek In	n)					
Areas Not Included in 1999 Removal Actions (Golder 1996d, 2000e) 4	73	116.0	41000.0	1946.9	540.0	91.0	97700.0	3054.9	750.0	50.0	######	5504.5	2100.0
Post-Removal Sampling in Areas Included in 1999 Removal Actions (Golder 2000e) ^{4, 5}	87	150.0	3000.0	807.9	570.0	NT	NT	NT	NT	50.0	20270.0	1790.6	970.0
Panther Creek Inn (includ	ling PCI Car	mpground	and East	Campgro	ound)					·			
Areas Not Included in 1999 Removal Actions (Golder 1996d, 2000e)	3	72.0	116.0	97.7	105.0	62.0	94.0	80.3	85.0	46.0	64.0	57.7	63.0
Post-Removal Sampling in Areas Included in 1999 Removal Actions (BMSG 1999) ^{4,6}	73	150.0	4500.0	389.2	150.0	NT	NT	NT	NT	50.0	1900.0	334.8	50.0

- 1. NT = Not Tested (or not presented).
- 2. These samples were analyzed in a laboratory, so their detection limits are lower than for the Big Deer Creek samples in Golder (1996d)
- 3. These samples were analyzed using XRF, so their detection limits are much higher than for the laboratory values presented in Table 5-32 of this RI
- 4. Non-detect results were assigned a value equal to one-half the detection limit (detection limits varied from data set to data set).
- 5. These samples are post-removal samples (i.e., samples taken from areas subsequent to overbank deposit removal).
- 6. Many samples had arsenic concentrations below the XRF detection limits; therefore, the median and minimum reflect one-half the detection limit.
- 7. All of the samples analyzed for cobalt by XRF had non-detect results. The minimum cobalt concentration is from a laboratory-analyzed sample.

TABLE 5-6

05-Mar SUMMARY OF SAMPLING FOR OTHER SOILS

			Co	oper		Cobalt 4				Arsenic			
Location	Number of Samples	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean (mg/kg)	Median (mg/kg)
Panther Creek Road ²	5	24	137	62	59	6	66	28	23	8	67	36	40
Soils in Areas Surrounding Waste-Rock Dumps 3, 4	38	200	2100	557	450	400	4500	665	400	75	3500	407	310
Diversion Ditches Near Waste-Rock Dumps ^{3, 4, 5}	32	200	3300	1013	825	400	840	414	400	75	3800	373	75
Mine Road in Meadow Creek Basin	10	778	1380	1032	1000	120	300	180	170	302	1040	711	702
Mine Road in Bucktail Creek Basin	5	1430	2330	1920	1780	143	196	176	184	60	2430	1187	1320

- 1. For soils not included as part of the waste-rock, debris flow, or overbank data sets. Detection limits were 400 mg/kg for copper, 800 mg/kg for cobalt, and 150 mg/kg for arsenic. Non-detect results were assigned a value equal to one-half the detection limit.
- 2. Data from CH2M Hill (1999).
- 3. Data from Golder (1996f).
- 4. Almost all of the samples tested below the detection limit for cobalt; therefore, the median and minimum reflect one-half the detection limit.
- 5. Many samples tested below the detection limit for arsenic; therefore, the median and minimum reflect one-half the detection limit.

B-6

3

TABLE 5-7

Comparison of Golder 1995 and 2000 Sediment Metal Concentrations (HCI/HNO₃ digestion)

Site	Date	Distance from Mouth	Arsenic	Cobalt	Copper	Iron	Manganese
		miles	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BB-18	08/17/1995	6	73.2	71.7	256	57500	468
BBSW-08	09/21/2000	0	28.7	17.5	422	32800	216
RPD		Service Constitution of the Constitution of th	是	# x = 1222 (###)	A 440% 42	55% FEW	学学74% 元言
BB-2A	08/16/1995	0.2	847	628	2490	49900	1100
BBSW-01	09/21/2000	0.2	555	426	1510	55700	826
RPD .	STATE OF THE SAME		3422	25 28 20 20	49%	111%%	完美28%
PCS Site 11-04	08/15/1995	21.5	72.8	264	450 -	25300	463
PASW-08	09/21/2000	21.3	203	130	141	16700	299
RPD			理定94%等别	學年年68%的	多数105%	41%	43%
PCS Site 10	08/17/1995		65.1	243	162	18700	383
PCS Site 10	08/17/1995	19.3	65.7	237	174	21700	387
PASW-07	09/21/2000	-	54.2	198	94.7	16900	343
* RPDY(using aver	TOTAL STREET		10%	19/6	56%	18%	12%
PCS Site 7	08/15/1995	12.9	93	117	1450	19100	215
PASW-05	09/21/2000	12.9	22.2	84.7	56.5	10600	230
11.1. 1.1. 1.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1. 11.1			S = 1022 Vo - 12		185% and	57%	29/66
PCS Site 1	08/15/1995	1.3	10.2	54.6	55.9	20500	238
PASW-01	09/21/2000	1.5	10.1	48.1	62.1	10300	138
PRPD#			4	2E26	10%	56%	753%E
SF-4	08/18/1995	0.6	20.8	19.4	86.4	22100	450
SFSW-04	09/21/2000	0.0	30	8.2	154	23100	509
RPD			4.0%	2.780%	2556% b 2	496	建 模 12% 新型
SF-1A	08/18/1995	0	448	499	7350	40700	497
SFSW-01	09/21/2000	· · · · · · · · · · · · · · · · · · ·	176	366	6400	35500	488
RED			380%	\$\$ F310%	114%	14%	图 2% 计
BD-8	08/16/1995	3.2	3.3	3.4	12	6590	116
BDSW-04	09/21/2000	3.2	1	1.4	29.7	4490	80.4
RRD			50 ±107% 3 34	200 88 % 200	85% F-28	38%	36%

RPD - relative percent difference.

Fall 2000 total metal data from HCI/HF digestion not included in comparison.

<u>Table 5-8</u>
Comparison of Sediment Total Metal Concentrations to PRG's

Station	Distance			As	Co	Cu
	from	Date	% Solids	mg/kg	mg/kg	mg/kg
	Mouth					
Blackbird Greek PRG	DE CARROLL	ANTICK.	6.2. THE	2935	数436集	1947637447
BBSW-08	6	09/21/2000	99.7 .	28.7	17.5	422
BBSW-08	6	10/16/2001		44.2	37.1	144
BBSW-07	4.5	09/21/2000	99.6	663	713	3240
BBSW-07	4.5	10/16/2001		712	717	4250
BBSW-03	3.3	09/21/2000	99.3	1330	346	3320
BBSW-03	3.3	10/16/2001	<u> </u>	978	377	2050
BBSW-01	0.2	09/21/2000	99.1	555	426	1510
BBSW-01	0.2	10/16/2001		563	546	709
Ranther, Creek PRO			WARR	3.185 93.7	数据83組	4151 A
PASW-01	1.3	09/21/2000	99.9	10.1	48.1	62.1
PASW-01	1.3	10/16/2001		14.6	53.1	76.6
PASW-04	11.5	09/21/2000	99.9	38.9	60.8	231
PASW-04	11.5	10/16/2001	<u> </u>	40.1	71.3	313
PASW-05	12.9	09/21/2000	99.8	22.2	84.7	56.5
PASW-05	12.9	10/16/2001		26.7	91	181
PASW-07	19.3	09/21/2000	99.8	54.2	198	94.7
PASW-07	19.3	10/16/2001		115	154	201
PASW-08	21.5	09/21/2000	99.6	203	130	141
PASW-08	21.5	10/16/2001		152	246	300
PASW-10	23.7	09/21/2000	99.8	50	79.1	61
PASW-10	23.7	10/16/2001		83.7	86.5	82.2
PASW-11	25	09/21/2000	99.5	6.4	3.1	39.5
PASW-11	25	10/16/2001		14.6	19.8	14.1
Similation all a need the land of	East of the last o			295 363	H 2436 2.4	是据68万人的
SFSW-04	0.6	09/21/2000	99.5	30	8.2	154
SFSW-04	0.6	09/20/2001		27.4	12.1	312
SFSW-01	0	09/21/2000	99.8	176	366	6400
SFSW-01	0	09/20/2001		158	397	7410
	:07875100007470000	2.50 May 1925 1997	ALCO VICE OFFICE AL	N = 以表现的数据数据数据数据	Market and State	en recurrence de la composition della compositio
atalogo a operación de					第3983 5 混乱	
BDSW-01	0	09/21/2000	100	5.7	69.8	385
BDSW-01	0	09/20/2001		5.5	53.8	301
BDSW-02	2.1	09/21/2000	99.9	7.1	37.4	215
BDSW-02	2.1	09/20/2001		12.6	40	189
BDSW-04	3.2	09/21/2000	99.9	1	1.4	29.7
BDSW-04		09/20/2001		2.1	2.3	12.7
Buckidly Greek	MARKET TO SE		3/19/12/2019			(100mm)
BTSW-01.1	0.1	09/20/2001	<u>ar (m. saata) (</u> 216	228	776	10900
	2.1	09/20/2001		371		8716
BTSW-02	2.1	03/20/2001		١/ د	812	8/10

Notes: --Results presented in **bold** exceeded In Stream Sediment PRG's
--No PRG's have been established for Bucktail Creek

After Golder Associates

Table 5-8.xls

w . At which was properties to the control of

Creek (B	BSW-UIA) and P	anther Cřěčk (PASW-09) Cobalt						
<u> </u>								
Blackbird Creek		Dissolved	Total					
Station	Date	Conc. (mg/L)	Conc. (mg/L)					
BBSW-01A	12/22/2001	0.63	0.644					
BBSW-01A	01/15/2002	0.666	0.676					
BBSW-01A	02/18/2002	0.65	0.636					
BBSW-01A	03/12/2002	0.674	0.691					
BBSW-01A	03/15/2002	0.748	0.78					
BBSW-01A	03/24/2002	0.541	0.571					
BBSW-01A	04/09/2002	0.222	0.218					
BBSW-01A	04/17/2002	0.157	0.162					
BBSW-01A	04/24/2002	0.185	0.186					
BBSW-01A	05/01/2002	0.11	0.114					
BBSW-01A	05/06/2002	0.099	0.104					
BBSW-01A	05/17/2002	0.082	0.092					
BBSW-01A	05/23/2002	0.09	0.098					
BBSW-01A	06/04/2002	0.1	0.102					
BBSW-01A	06/21/2002	0.154	0.166					
BBSW-01A	07/30/2002	0.209	0.22					
BBSW-01A	08/19/2002	0.300	0.315					
BBSW-01A	09/18/2002	0.462	0.499					
BBSW-01A	10/18/2002	0.516	0.535					
BBSW-01A	11/12/2002	0.581	0.582					
PASW-09	12/22/2001	0.05	0.053					
PASW-09	01/15/2002	0.062	0.064					
PASW-09	02/18/2002	0.064	0.065					
PASW-09	03/12/2002	0.099	0.107					
PASW-09	03/15/2002	0.11	0.118					
PASW-09	03/24/2002	0.079	0.087					
PASW-09	04/09/2002	0.061	0.063					
PASW-09	04/17/2002	0.05	0.053					
PASW-09	04/24/2002	0.048	0.05					
PASW-09	05/01/2002	0.032	0.034					
PASW-09	05/06/2002	0.033	0.036					
PASW-09	05/17/2002	0.026	0.03					
PASW-09	05/23/2002	0.021	0.025					
PASW-09	06/04/2002	0.016	0.021					
PASW-09	06/21/2002	0.014	0.016					
PASW-09	07/30/2002	0.015	0.02					
PASW-09	08/19/2002	0.023	0.026					
PASW-09	09/18/2002	0.044	0.045					
PASW-09	10/18/2002	0.0448	0.049					
PASW-09	11/07/2002	0.05(a)						
PASW-09	11/12/2002	0.0614	0.0621					

(a) Sample collected by E. Modroo/ID

TABLE 5-10

Summary of Surface Water Reference Station Concentrations (mg/L) by Creek

Parameter	Location	19	98	19	999	20	000
		High Flow	Low Flow	High Flow	Low Flow	High Flow	Low Flow
Cobalt	ICSW-01					0.003 ND ^a	0.003 ND
(Dissolved)	WFSW-02.5	0.007	0.006	0.003 ND	0.003 ND	0.003 ND	0.003 ND
	BBSW-08						0.003 ND
	PASW-11	0.002 ND	0.005	0.003 ND	0.003 ND	0.003 ND	0.003 ND
	SFSW-04					0.006	0.003 ND
•	SFSW-03		0.002 ND	0.003 ND	0.003 ND	0.003 ND	
	BDSW-04		0.002 ND	0.003 ND	0.003 ND	0.007	0.003 ND
Copper (Dissolved)	ICSW-01					0.004	0.002 ND
	WFSW-02.5	0.007	0.002 ND	0.002 ND	0.002 ND	0.002 ND	0.002 ND
	BBSW-08						0.002 ND
	PASW-11	0.002 ND	0.002 ND	0.002 ND	0.008 ^b	0.002 ND	0.002 ND
	SFSW-04					0.004	0.002 ND
	SFSW-03		0.01	0.02°	0.004 ^c	0.005°	
	BDSW-04		0.002 ND	0.02 ^d	0. 01 °	0.002 ND	0.002 ND
Iron (Total)	ICSW-01					0.04	0.1
	WFSW-02.5	0.5	0.2	0.2	0.1	0.1	0.07
	BBSW-08						0.06
	PASW-11	0.8	0.3	0.9	0.2	0.5	0.2
	SFSW-04					0.04	0.01 ND
	SFSW-03		0.010 ND	0.05	0.04	0.01 ND	
	BDSW-04		0.010 ND	0.2	0.01 ND	0.2	0.06

Notes:

^aND: Maximum exposure concentration is based on non-detected results (i.e., no results were reported above the detection limit). The value shown is one-half the detection limit.

^bThe dissolved copper value appears to be anomalous. This value appears to be the total copper value, rather than dissolved copper.

^cApparently anomalous results. The background station was moved upstream to SFSW-04 in 2000 to remove any possible interference from the lower Sediment Dam spillway.

^dApparently anomalous result. The dissolved sample results were greater than the total sample value, and copper was detected in the QA/QC blank sample.

⁶Apparently anomalous result. The downstream station (BDSW-03) had lower copper values than BDSW-04.

TABLE 5-11
Summary of 95% Upper Tolerance Levels for Background Sediment Data

and the second of the second o

Area	Parameter	Units	95% UTL
Mineralized	Arsenic	mg/kg	34.8
Mineralized	Cobalt	mg/kg	436
Mineralized	Copper	mg/kg	637
Mineralized	Iron	mg/kg	51,900
Panther Creek	Arsenic	mg/kg	34.8
Panther Creek	Cobalt	mg/kg	38.8
Panther Creek	Copper	mg/kg	87.4
Panther Creek	Iron	mg/kg	51,900

Notes:

UTL - Upper Tolerance Level

TABLE 5-12
SELECTED SUMMARY OF PRE-RI BACKGROUND SOIL CONCENTRATION DATA^{1,2,3}

Location	Co	pper	Co	balt	Are	enic	Comment
	Min	Max	Min	Max	Min	Max	
Blacktail open pit area prior to mining disturbance	60	2400	10	400	NT	NT	371 samples; Median values: Cu = 150 ppm; Co = 60 ppm
Banks of Blackbird Creek above Meadow Creek	30	700	10	100	NT	NT	Transect of 66 samples; Median values: Cu = 100 ppm; Co = 20 ppm
North side of Blackbird mining area	4	479	6	273	NT	NT	
Forest topsoil north of open-pit waste pile	1268	1441	122	142	8	10	two samples
Indian Creek	11	541	9	436	NT	NT	
Elkhorn Creek	5	1500	<5	700	<5	900	nine samples
Lower Panther Creek Canyon	5	1500	7	10	<5	500	

- 1. Adapted from Mebane (1994a); for undisturbed soils in the vicinity of Blackbird mining area.
- 2. All concentrations are in mg/kg dry weight unless noted otherwise.
- 3. NT means not tested.

TABLE 5-13

BACKGROUND SOIL CONCENTRATION DATA COLLECTED DURING THE RI 1

Location	Co	pper	C₀	balt	Ars	enic	Comment
	Min	Мах	Min	Max	Min	Max	
Riparian (n = 15; Medians: C	u =24.9; C	o =14.4 ; <i>I</i>	As =17.6 .	Mean value	es: Cu =1	22.3; Co =	39.4; As =62.6)
Big Deer Creek 2	17.0	26.9	7.4	9.6	5.9	18.4	n = 2
Blacktail Ridge 2	9).7	8	.3	4	.9	Single sample
East Blacktail Pit 2	31.1	1425.0	14.2	314.0	11.1	637.5	n = 4
West Fork Blackbird Creek above Tailings Impoundment ²	90	6.8	60	5.3	59	9.0	Single sample
Ludwig Gulch ²	12.9	28.2	10.6	35.6	14.4	43.7	n = 6
Panther Creek Upstream of Blackbird Creek ²	24	24.9		10.4		1.1	Single sample
Panther Creek Downstream of Panther Creek Inn ³	14.0	71.7	4.0	62.0	12.4	57.8	n = 9; Medians: Cu = 27.2; Co = 18.5; As = 32.3. Mean values: Cu = 28.9; Co = 21.1; As = 29.8.
Borrow Soils ³	15.7	130.0	12.7	71.6	7.7	158.0	n = 37; Medians: Cu = 35.5; Co = 29.4; As = 39.8. Mean values: Cu = 42.1; Co = 35.5; As = 48.6.

Notes:

- 1. All concentrations are in mg/kg dry weight.
- 2. From Golder (1996d). Concentrations for a sample are the average from the -10 and -200 fractions.
- 3. From Golder (1999b) and CH2M Hill (1999).

Table 5-14
Background Samples
Panther Creek Overbank Deposits
Blackbird Mine Site

	Sample ID	Sampling Event	Arsenic Concentratio
	<u> </u>	······································	(mg/kg)
	CT-1	1998 Borrow Material	9.9
	CT-2	1998 Borrow Material	2
	CT-3	1998 Borrow Material	10.5
	CT-4	1998 Borrow Material	17
	CT-5	1998 Borrow Material	6
	CT-6	1998 Borrow Material	14
	CT-7	1998 Borrow Material	15.2
	CT-8	1998 Borrow Material	13.4
	CT-9	1998 Borrow Material	15.7
	CT-10	1998 Borrow Material	33.5
	CT-11	1998 Borrow Material	22.7
	CT-12	1998 Borrow Material	7.7
	CT-13	1998 Borrow Material	49.1
	CT-14	1998 Borrow Material	2
	990001	1999 Borrow Material	66.1
	990002	1999 Borrow Material	62.9
	990003	1999 Borrow Material	53.9
	990004	1999 Borrow Material	39.8
	990005	1999 Borrow Material	87.6
	990006	1999 Borrow Material	158
	990007	1999 Borrow Material	51.4
	990008	1999 Borrow Material	31.2
	990009	1999 Borrow Material	26.6
	990010	1999 Borrow Material	131
	990011	1999 Borrow Material	97
	990012	1999 Borrow Material	26
	990013	1999 Borrow Material	45.3
	990014	1999 Borrow Material	39.1
	990015	1999 Borrow Material	63.4
	990016	1999 Borrow Material	15.5
	990017	1999 Borrow Material	69.2
	990018	1999 Borrow Material	50.1
	990019	1999 Borrow Material	14.3
	990020	1999 Borrow Material	
	990021	1999 Borrow Material	43.8
			70.4
	990022	1999 Borrow Material	62.9
	990023	1999 Borrow Material	53.3
•	661564	1995 Riparian Background Areas	6.7
	661565	1995 Riparian Background Areas	6.2
	741573	1995 Riparian Background Areas	63.3
	821584	1995 Riparian Background Areas	14.5
	821585	1995 Riparian Background Areas	11.7
	981380	1998 Overbank Deposit Areas	37.8
	981358	1998 Overbank Deposit Areas	43

Mary Mary Mary James of the State of St

Table 5-14
Background Samples
Panther Creek Overbank Deposits
Blackbird Mine Site

Sample ID	Sampling Event	Arsenic Concentration (mg/kg)
981426	1998 Overbank Deposit Areas	57.8
981436	1998 Overbank Deposit Areas	32.3
981439	1998 Overbank Deposit Areas	19.1
981 44 5	1998 Overbank Deposit Areas	17.9
981466	1998 Overbank Deposit Areas	15
981521	1998 Overbank Deposit Areas	32.5
981522	1998 Overbank Deposit Areas	32.3

Table 7-1 Surface Soil/Mine Wastes Exposure Assumptions Record of Decision Blackbird Mine Site

									Reasonable	Maximum Ex	oosure (RME) S	cenario						
Exposure Parameter		Adult Occupational Worker	Adult Recreational Day-Users Blackbird Mine	Teen Recreational Day-Users	Adult Recreational Day-Users Upper Blackbird Creek	Child Recreational Day-Users Upper Blackbird Creek	Adult Occupational Worker Upper Blackbird Creek	Adult Recreational Day-Users Lower Blackbird Creek	Child Recreational Day-Users Lower Blackbird Creek	Adult Recreational Day-Users West Fork Blackbird Creek	Child Recreational Day-Users West Fork Blackbird Creek	Adult Occupational Worker West Fork Blackbird Creek	Adult Recreational Campers South Fork Big Deer Creek/ Big Deer Creek	Child Recreational Campers South Fork Big Deer Creek/ Big Deer Creek	Adult Recreational Day-Users South Fork Big Deer Creek/ Big Deer Creek	Child Recreational Day-Users South Fork Big Deer Creek/ Big Deer Creek/	Adult Recreational Day-Users Ruckfell Creek	Teen Recreational Day-Users Bucktail Creek
Exposure Frequency (days/year)	EF•		7	7	7	7	7	14	14	14	14	7	14	14	14	14	7	7
Exposure Time (hours/day) .	ET	2	2	2 .	2 .	2	2	2	- 2	2	· 2	2	16	14	. 2	2	2	2.
Exposure Duration (years)	ED	25	30	6	30	6	25	30	6	30	6	25	30/6	30/6	30/6	30/6	30	6
Ingestion Rate (mg/day)	IngR	50	100	100	100	300	50	100	300	100	300	50	100	300	100	300	100	100
Inhalation Rate (m _y /day)	InhR	20	20	10	20	10	20	20	10	20	10	20	20	10	20	10	20	10
Skin Surface Area (cm ₂)	SA	2,500	4,800	3,500	4,800	2,200	2,500	4,800 •	2,200	4,800	2,200	2,500	4,800	2,200	4,800	2,200	4,800	3,500
Body Weight (kg)	BW	70	70	45	70	15	70	70	15	70	15	70	70	15	70	15	70	45
Averaging Time for Carcinogens (yr)	ATc	70	70	70	70	70	70	70	70	70	. 70	70	70	70	70	70	70	70
Averaging Time for Noncarcinogens (yr)	ATno	30	30	6	30	6	30	30	6	30	6	30	30	6	30 .	6	30	6
Bioavailability Factor for Arsenic (unitless)	BAF	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
1/Particulate Emission Factor (kg/m _s)	1/PEF	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10
Absorption Factor for Arsenic (unitless)	ABS	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Absorption Factor for other Inorganics (unitless)	ABS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o
Soil-Skin Adherence Factor (mg/cm/day)	AF	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2

Table 7-2 Sediment Exposure Assumptions
Record of Decision
Blackbird Mine Site

Blackbird Mine Site									Reasonable	Maximum Exp	osure (RME) S	cenario						
	•	Adult Occupational Worker	Adult Recreational Day-Users	Teen Recreational Day-Users	Day-Users Upper Blackbird	Child Recreational Day-Users Upper Blackbird	Adult Occupational Worker Upper Blackbird	Day-Users Lower Blackbird	Child Recreational Day-Users Lower Blackbird	Adult Recreational Day-Users West Fork Blackbird	Child Recreational Day-Users West Fork Blackbird	Adult Occupational Worker West Fork Blackbird		Child Recreational Campers South Fork Big Deer Creek/	Adult Recreational Day-Users South Fork Big Deer Creek/	Child Recreational Day-Users South Fork Big Deer Creek/	Adult Recreational Day-Users	Teen Recreational Day-Users
Exposure Parameter		Blackbird Mine	Blackbird Mine	Blackbird Mine	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek_	Big Deer Creek	Big Deer Creek	Big Deer Creek	Big Deer Creek	Bucktall Creek	Bucktail Creek
Exposure Frequency (days/year)	EF	167	7	7	7	7	7	14	14	14	14	7 :	- 14	14	14	14	7	7
Exposure Time (hours/day)	ĒĪ	. 2	1 -	- 1	1	1	2	1	1	. 1.	1	2.	11.1	1 1	1	1	1	1
Exposure Duration (years)	ED	25	30	6	· 30	6	25	30	6	30	. 6	25	30	6	30	6	30	6
Ingestion Rate (mg/day)	IngR	50	100	100	100	300	50	100	300	100	300	50	100	300	100	300	100	100
Inhalation Rate (m³/day)	InhA	20	20	10	20	10	20	20	10	20	10	20	20	10	20	10	20	10
Skin Surface Area (cm²)	SA	2,500	4,800	3,500	4,800	2,200	2,500	4,800	2,200	4,800	2,200	2,500	4,800	2,200	4,800	2,200	4,800	3,500
Body Weight (kg)	BW :	70	70	45	70	15	70	70	15	70	15	70	70	15	70	15	70	45
Averaging Time for Carcinogens (yr)	ATc	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
Averaging Time for Noncarcinogens (yr)	ATnc	30	30	6 .	30	6	30	30	6	30	6	30	30	6	30	6	30	6
Bioavailability Factor for Arsenic (unitless)	BAF	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
1/Particulate Emission Factor (kg/m _s)	1/PEF	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10	7.60E-10
Absorption Factor for Arsenic (unitless)	ABS	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Absorption Factor for other Inorganics (unitless)	ABS	· 0	0	0	0	0	0	. О	0	. 0	0	0	· 0 -· ·	o ,	0	0	0	0
Soil-Skin Adherence Factor (mg/cm/day)	AF	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.2	0.1	0.2

noues:
a: The exposure time for workers is based on the assumption that workers are outside 2 out of 8 hours per work day. The exposure time for the other scenarios is based on the assumption that adults are awake 16 hours per day, spending 1 hour contacting sediment and surface water, and children are awake 14 hours per day, while spending 2 hours contacting sediment and surface water, b: The Panther Creek exposure area includes the Panther Creek inn.

Table 7-3 Surface Water Exposure Assumptions Record of Decision Blackbird Mine Site

		Reasonable Maximum Exposure (RME) Scenario																
					Adult	Child	Adult	Adult	Child	Adult	Child	Adult	Adult	Child	Adult	Child		
				_			Occupational	Recreational					Recreational	Recreational	Recreational	Recreational		_
		Adult	Adult	Teen	Day-Users	Day-Users	Worker	Day-Users	Day-Users	Day-Users	Day-Users	Worker	Campers	Campers	Day-Users	Day-Users	Adult	Teen
		Occupational	Recreational	Recreational	Upper	Upper	Upper	Lower	Lower	West Fork	West Fork	West Fork	South Fork	South Fork	South Fork	South Fork	Recreational	Recreational
		Worker	Day-Users	Day-Users	Blackbird	Blackbird	Blackbird	Blackbird	Blackbird	Blackbird	Blackbird	Blackbird	Big Deer Creek/			Big Deer Creek/	Day-Users	Day-Users
Exposure Parameter		Blackbird Mine	Blackbird Mine	Blackbird Mine	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Big Deer Creek	Big Deer Creek	Big Deer Creek	Big Deer Creek	Bucktail Creek	Bucktail Creek
Exposure Frequency (days/year)	EF	167	7 .	7	7	. 7	7	14	14	14	14	7	14	14	14	14	7	7
Exposure Time (hours/day) ^a	ET	2	1	1	1	1	2	1	1	1	1	2	1	1	1	1	1	1
Exposure Duration (years)	ED	25	30	6	30	6	25	30	6	30	6	25	30	6	30	6	30	6
Ingestion Rate (L/day)	IngR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Skin Surface Area (cm ₂)	SA	2,500	4,800	3,500	4,800	2,200	2,500	4,800	2,200	4,800	2,200	2,500	4,800	2,200	4,800	2,200	4,800	3,500
Body Weight (kg)	BW	70	70	45	70	15	70	70	15	70	15	70	70	15	70	15	70	45
Averaging Time for Carcinogens (yr)	ATc	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
Averaging Time for Noncarcinogens (yr)	ATno	30	30	6	30	6	30	30	6	30	6	30	30	6	30	6	30	6
Bioavailability Factor for Arsenic (unitless)	BAF	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Conversion Factor (L/cm ₃)	CF	0.001	0.001	0.001 .	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Chemical Specific Permeability Constant																	a na.	• • • •
(cm/hr)	PC	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

a: The exposure time for workers is based on the assumption that workers are outside 2 out of 8 hours per work day. The exposure time for the other scenarios is based on the assumption that adults are awake 16 hours per day, while spending 1 hour contacting sediment and surface water, and children are awake 14 hours per day, while spending 2 hours contacting sediment and surface water, and children are awake 14 hours per day, while spending 2 hours contacting sediment and surface water.

b: The Panther Creek exposure area includes the Panther Creek Inn.

Table 7-4
Surface Soil/Mine Wastes Exposure Point Concentrations
Record of Decision
Blackbird Mine Site

			I I					
Exposure Area	Chemical	Units	Exposure Point Concentration	EPC Basis				
	Arsenic	mg/kg	867	NORM				
Blackbird Mine	Cobalt		- Cobalt was not id	entified as a COC -				
Biackbird Willie	Copper	mg/kg	1,379	NORM				
	lron	mg/kg	78,412	NORM				
·								
	Arsenic	mg/kg	4,918	LOGNORM				
	Cobalt	mg/kg	2,111	LOGNORM				
Upper Blackbird Creek	Copper	mg/kg	1,222	LOGNORM				
	lro n	mg/kg	113,346	LOGNORM				
	Manganese	mg/kg	4,647	LOGNORM				
			,					
	Arsenic	mg/kg	2,010	LOGNORM				
	Cobalt	mg/kg	23,492	NORM				
Lower Blackbird Creek	Copper	mg/kg	1,088	LOGNORM				
!	Iron	mg/kg	66,156	LOGNORM				
	Manganese	mg/kg	25,619	LOGNORM				
· · · · · · · · · · · · · · · · · · ·								
	Arsenic	mg/kg	2,205	LOGNORM				
	Cobalt							
•	Copper			dentified as a COC -				
West Fork Blackbird Creek	Iron		- Iron was not ide	entified as a COC -				
	Manganese	- 1	langanese was no	t identified as a COC -				
	Nickel		- Nickel was not id	lentified as a COC -				
	Zinc		- Zinc was not ide	entified as a COC -				
,	Arsenic	mg/kg	572	NORM				
Bucktail Creek	Cobalt		- Cobalt was not id	dentified as a COC -				
	Copper		 Copper was not it 	dentified as a COC -				
	Arsenic	mg/kg	108	LOGNORM				
South Fork Big Deer Creek/Big Deer			- Cobalt was not id	dentified as a COC -				
Creek	Copper	mg/kg	7,544	LOGNORM				
	Iron		- Iron was not ide	entified as a COC -				
Panther Creek	Risks from exposure to surface soil in the Panther Creek exposur area are addressed in Attachment 1, Panther Creek Inn, and Attachment 2, Panther Creek Overbank Deposits							

EPC : Exposure Point Concentration

NORM: Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a normal distribution.

LOGNORM : Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a lognormal distribution.

NA : Not applicable. There are no detects, therefore a EPC is not calculated.

MAXDET(< MinNumSamples): Maximum detected concentration is used when there are less than 10 samples in the data set.

Table 7-5 Sediment Exposure Point Concentrations Record of Decision Blackbird Mine Site

·	<u></u>		· ·		
			Exposure Point		
Exposure Area	Compound	Units	Concentration	Basis	
	Arsenic		- Arsenic was not	t identified as a COC -	
	Cobalt			identified as a COC -	
 Blackbird Mine 	Copper		 Copper was not 	t identified as a COC -	
	Iron	mg/kg	32,800	MAXDET (<minnumsamps)< td=""></minnumsamps)<>	
	Manganese		Manganese was r	not identified as a COC -	
	Arsenic	ma/ka	1,134	NORM	
	Cobalt	mg/kg		identified as a COC -	
Lippor Blookhise Crook				LOGNORM	
Upper Blackbird Creek	Copper	mg/kg	3,579		
	Iron	mg/kg	81,161	LOGNORM	
	Manganese	<u> </u>	· Manganese was r	not identified as a COC -	
	Arsenic	mg/kg	1,132	NORM	
	Cobalt			identified as a COC -	
Lower Blackbird Creek	Copper	mg/kg	2.886	NORM	
	Iron	mg/kg	80,973	NORM	
	Manganese	mg/kg	1,569	NORM	
	Imanganoso	1 1119119	1,000		
	Arsenic	mg/kg	1,230	MAXDET (<minnumsamps)< td=""></minnumsamps)<>	
	Cobalt			identified as a COC -	
West Fork Blackbird Creek	Copper	- Copper was not identified as a COC -			
	Iron	mg/kg	97,000	MAXDET (<minnumsamps)< td=""></minnumsamps)<>	
	Manganese		Manganese was i	not identified as a COC -	
		·			
	Arsenic	mg/kg	371	MAXDET (<minnumsamps)< td=""></minnumsamps)<>	
	Cobalt		- Cobalt was not	identified as a COC -	
Bucktail Creek	Copper	mg/kg	10,900	MAXDET (<minnumsamps)< td=""></minnumsamps)<>	
	Iron		- Iron was not i	dentified as a COC -	
	Manganese	,		not identified as a COC -	
	TA	I 0 1	70	LOGNORM	
	Arsenic	mg/kg	78		
South Fork Big Deer	Cobalt	<u> </u>		identified as a COC -	
Creek/Big Deer Creek	Copper	mg/kg	5644	LOGNORM	
3	Iron	mg/kg	24773	LOGNORM	
· · · · · · · · · · · · · · · · · · ·	Manganese		Manganese was	not identified as a COC	
	Arsenic	mg/kg	73	NORM	
	Cobalt	1	- Cobalt was not	t identified as a COC -	
Panther Creek	Copper			t identified as a COC -	
Tullion Grook	Iron	mg/kg		LOGNORM	
	Manganese	mg/kg	1.714	LOGNORM	
	Intidityanese	1 1119/19	1 1,717		

EPC: Exposure Point Concentration

NORM: Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a normal distribution.

LOGNORM: Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a lognormal distribution.

MAXDET: Maximum detected concentration is used as the EPC.

Table 7-6
Surface Water Exposure Point Concentrations
Record of Decision
Blackbird Mine Site

			Exposure Point			
Exposure Area	Compound	Units	Concentration	Basis		
		1				
	Arsenic	mg/L	0.17	LOGNORM		
	Cobalt	J	- Cobalt was not ide			
Blackbird Mine	Copper	1	- Copper was not ide			
	Iron	mg/L	61.22	LOGNORM		
	Manganese	mg/L	3.0	LOGNORM		
		1				
	Arsenic	mg/L	0.02	LOGNORM		
	Cobalt		- Cobalt was not ide	ntified as a COC -		
Upper Blackbird Creek	Copper	mg/L	1.03	LOGNORM		
	Iron	mg/L	5.16	LOGNORM		
	Manganese		- Manganese was not	identified as a COC -		
•	Arsenic	mg/L	0.03	LOGNORM		
	Cobalt		- Cobalt was not ide			
Lower Blackbird Creek	Copper	- Copper was not identified as a COC -				
	Iron	mg/L	5.54	LOGNORM		
	Manganese	- Manganese was not identified as a COC -				
		I				
	Arsenic	mg/L	0.01	LOGNORM		
	Cobalt	mg/L	6.02	MAXDET		
West Fork Blackbird Creek	Copper	mg/L	1.06	MAXDET		
	Iron	mg/L	114	MAXDET		
	Manganese	mg/L	3.85	MAXDET		
	Arsenic	mg/L	0.02	LOGNORM		
Bucktail Creek	Cobalt	mg/L	3.1	NORM		
Duoman orean	Copper	mg/L	9	NORM		
	Manganese	mg/L	1.8	LOGNORM		
	,					
	Arsenic	4				
South Fork Big Deer	Cobalt	J no (COCs were identified to	or the South Fork Big Deer		
Creek/Big Deer Creek	Copper	٠.,	Creek/Big Deer Cr			
2.30.02.g 200. 0100K	Iron	4	Stockering Doct Of	os. S.posaio aica		
	Manganese					
	r					
	Arsenic	_		j		
	Cobalt		OCs were identified for	the Panther Creek exposure		
Panther Creek	Copper			ea		
	Iron	4	ui.			
	Manganese	<u> </u>	-			

A Same

Notes:

EPC : Exposure Point Concentration

NORM : Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a normal distribution.

LOGNORM: Exposure Point Concentration is based on the 95% Upper Confidence Limit assuming a lognormal distribution.

MAXDET: Maximum detected concentration is used as the EPC.

Table 7-7
Risk Characterization Summary - Surface Soil/Mine Wastes
Record of Decision
Blackbird Mine Site

Reasonable Ma:	ximum Exposure	Central Tendency Exposure		
	NonCancer		NonCancer	
Cancer Risk	Hazard Index	Cancer Risk	Hazard Index	
· ··· · · · · · · · · · · · · · · · ·				
3E-05	1 02	6E-06	0.1	
			1E-04	
		32-07	5E-04	
		15.06	5E-04	
1E-05	1	15-06	<u></u>	
9E-06	0.05	7E-07	0.01	
	0.6		0.1	
· 3E-05		5E-06		
8E-06	0.06	1E-06	0.03	
				
1 9E 06	T 01	2 07	0.03	
0E-00		2E-01	0.03	
05.05			0.2	
	<u> </u>	5E-06	·	
	-,			
4E-06	0.02	2E-07	0.01	
••	0.5		0.1	
3E-05		3E-06		
4E-06	0.03	1E-06	0.01	
			· · · · · · · · · · · · · · · · · · ·	
15.06	0.008	25.07	0.004	
		26-07	0.004	
		9E-07	0.01	
02-00	<u></u>	0L-07	<u></u>	
3E-06	0.03	6E-07	0.003	
	0.3		0.04	
3E-06		1E-06		
4E-07	0.005	4E-08	0.002	
	0.05		0.01	
1E-06		3E-07		
Risks from exp	osure to surface soil i	n the Panther Creek	exposure area are	
	3E-05 2E-06 1E-05 9E-06 2E-05 4E-06 2E-05 4E-06 4E-06 3E-06 4E-06 3E-06 4E-07 1E-06 1E-06 4E-07 1E-07 4E-07 1E-07 4E-07 1E-07 4E-07 1E-07 4E-07 1E-07 4E	3E-05 0.2 2E-06 0.01 0.02 1E-05	SE-05 O.2 6E-06	

NC = Not calculated; no Chemicals of Concern (COCs) were identified.

^{--:} Age-Adjusted cancer risk estimates including exposures to both adult and child receptors and are used to represent potential risk to child receptors. However, age-adjusted noncancer risks estimates are superceded by the child noncancer risk estimates.

Bolded results indicate an exceedance of U.S. EPA's target risk range of 1E-04 (1 x 10⁻⁴) to 1E-06 (1 x 10⁻⁵) or HI of 1.

Į.	Reasonable Ma:	kimum Exposure	Central Tendency Exposure		
<u> </u>		NonCancer		NonCancer	
Exposure Area/Receptor	Cancer Risk	Hazard Index	Cancer Risk	Hazard Index	
Blackbird Mine					
Adult Worker	NC	0.02	NC	0.002	
Adult Day-User	NC NC	5E-04	NC .	5E-05	
Teen Day-User		0.002		1E-04	
Age-Adjusted Day-User	NC		NC NC	1E-04	
Upper Blackbird Creek					
Adult Day-User	9E-07	0.01	7E-08	0.001	
Child Day-User	·	0.08		0.017	
Age-Adjusted Day-User	5E-06		1E-06		
Adult Worker	3E-06	0.02	8E-07	0.001	
Lower Blackbird Creek					
Adult Day-User	2E-06	0.01	2E-07	0.003	
Child Day-User		0.06		0.003	
Age-Adjusted Day-User	1E-05		2E-06		
West Fork Blackbird Creek					
Adult Day-User	1E-06	0.07	8E-08	0.001	
Child Day-User		0.09	••	0.018	
Age-Adjusted Day-User	6E-06		1E-06		
Adult Worker	4E-06	0.03	9E-07	0.005	
Bucktail Creek					
	05.03	T	05.00	1	
Adult Day-User	3E-07	0.00	2E-08	0.000	
Teen Day-User		0.02		0.004	
Age-Adjusted Day-User	2E-06		3E-07		
South Fork Big Deer Creek/Big	Deer Creek				
Adult Camper	1E-07	0.001	1E-08	0.0004	
Child Camper		0.02		0.006	
Age-Adjusted Camper	7E-07		2E-07		
Adult Day-User	1E-07	0.001	1E-08	0.0004	
Child Day-User		0.02		0.006	
Age-Adjusted Day-User	7E -07		2E-07		
Panther Creek					
Adult Day-User	1E-07	0.004	15.00	2 2222	
Child Day-User	1E-0/	0.001	1E-08	0.0003	
Age-Adjusted Day-User		0.02		0.004	
Age-Adjusted Day-User	7E-07		2E-07		

William .

Notes:

NC = Not calculated; no Chemicals of Concern (COCs) were identified.

--: Age-Adjusted cancer risk estimates including exposures to both adult and child receptors and are used to represent potential risk to child receptors. However, age-adjusted noncancer risks estimates are superceded by the child noncancer risk estimates.

Bolded results indicate an exceedance of U.S. EPA's target risk range of 1E-04 (1 x 10⁻⁴) to 1E-06 (1 x 10⁻⁶) or HI of 1.

Table 7-9
Summary of Risk Calculations - Surface Water
Record of Decision
Blackbird Mine Site

	Reasonable Maxi	mum Exposure	Central Tendency Exposure		
		NonCancer		NonCancer	
Exposure Area/Receptor	Cancer Risk	Hazard Index	Cancer Risk	Hazard Index	
					
Blackbird Mine					
Adult Worker	1E-05	0.07	8E-07	0.02	
Adult Day-User	1E-05	0.07	8E-07	0.02	
Teen Day-User		0.004	-	2E-04	
Age-Adjusted Day-User	7E-07		7E-07		
Upper Blackbird Creek					
Adult Day-User	1E-08	0.0001	9E-10	3E-05	
Child Day-User		0.0001	••	2E-04	
Age-Adjusted Day-User	2E-07		9E-08		
Adult Worker	4E-08	3E-04	3E-09	5E-04	
Lower Blackbird Creek					
Adult Day-User	4E-08	0.0004	8E-07	1E-04	
Child Day-User	4E-00	0.002	0E-07	2E-03	
	2E-07	0.002	3E-07	2E-03	
Age-Adjusted Day-User	2E-01		3E-07	l .:	
West Fork Blackbird Creek					
Adult Day-User	NC	0.009	NC	5E-04	
Child Day-User		0.002		0.002	
Age-Adjusted Day-User	NC		NC :		
Adult Worker	NC	0.002	NC	5E-04	
Bucktail Creek	·				
Adult Day-User	1E-08	4E-04	1E-09	9E-05	
Teen Day-User		0.002	••	7E-05	
Age-Adjusted Day-User	2E-07		1E-07		
0 11 5 1 0: 0 - 1/0:	- D O				
South Fork Big Deer Creek/Bi	g Deer Creek	· · · · · · · · · · · · · · · · · · ·			
Adult Camper					
Child Camper					
Age-Adjusted Camper		NC : no COCs id	lentified		
Adult Camper					
Child Camper					
Age-Adjusted Camper					
Panther Creek					
Adult Day-User				-	
Child Day-User		NC : no COCs id	dentified		
Age-Adjusted Day-User					

NC = Not calculated; no Chemicals of Concern (COCs) were identified.

^{--:} Age-Adjusted cancer risk estimates including exposures to both adult and child receptors and are used to represent potentirisk to child receptors. However, age-adjusted noncancer risks estimates are superceded by the child noncancer risk estimate **Bolded results** indicate an exceedance of U.S. EPA's target risk range of 1E-04 (1 x 10⁻⁴) to 1E-06 (1 x 10⁻⁶) or HI of 1.

Table 7-10
Summary of Cumulative Risk Assessments Results (Surface Soil/Mine Wastes, Sediment, and Surface Water)
Record of Decision
Blackbird Mine Site

Exposure Scenario/	Reasonable Max		Central Tendency Expos		
		NonCancer		NonCancer	
Receptor	Cancer Risk	Hazard Index	Cancer Risk	Hazard Index	
Blackbird Mine	· · · · · · · · · · · · · · · · · · ·				
Adult Worker	4E-05	0.3	7E-06	0.1	
Adult Day-User	1E-05	0.08	2E-06	0.02	
Teen Day-User		0.08	26-00	8E-04	
Age-Adjusted Day-User	1E-05	0.02	2E-06	<u>0</u> ⊏-∪4	
Age-Aujusteu Day-Oser	1L-03	_L	22-00		
Upper Blackbird Creek					
Adult Day-User	1E-05	0.1	8E-07	0.0	
Child Day-User		. 0.7		0.2	
Age-Adjusted Day-User	3E-05		6E-06		
Adult Worker	1E-05	0.1	2E-06	0.03	
Lower Blackbird Creek					
Adult Day-User	9E-06	0.1	1E-06	0.03	
Child Day-User		0.7		0.2	
Age-Adjusted Day-User	3E-05		8E-06		
West Fork Blackbird Creek					
Adult Day-User	5E-06	0.1	3E-07	0.01	
Child Day-User		0.6	32-07	0.01	
Age-Adjusted Day-User	3E-05		4E-06		
Adult Worker	7E-06	0.1	2E-06	0.0	
Addit Worker	72.00	1 0.1	1 22.00	0.0	
Bucktail Creek				····	
Adult Day-User	2E-06	0.01	3E-07	0.00	
Child Day-User		0.03		0.0	
Age-Adjusted Day-User	7E-06		1E-06		
South Fork Big Deer Creek					
Adult Camper	3E-06	0.03	6E-07	0.003	
Child Camper		0.3		0.04	
Age-Adjusted Camper	4E-06		2E-06	••	
Adult Day-User	5E-07	0.006	5E-08	0.002	
Child Day-User	••	0.1		0.02	
Age-Adjusted Day-User	2E-06	<u> </u>	4E-07	- -	
Panther Creek (Sediment a	nd Surface Water Only	<u> </u>			
Adult Day-User	1E-07	0.001	1E-08	25.04	
Child Day-User	1E-07			3E-04	
		0.02		0.004	
Age-Adjusted Day-User	7E-07		2E-07		

NC = Not calculated; no Chemicals of Concern (COCs) were identified.

^{--:} Age-Adjusted cancer risk estimates including exposures to both adult and child receptors and are used to represent potential risk to child receptors. However, age-adjusted noncancer risks estimates are superceded by the child noncancer risk estimates.

Bolded results indicate an exceedance of U.S. EPA's target risk range of 1E-04 (1 x 10⁻⁴) to 1E-06 (1 x 10⁻⁶) or HI of 1.

TABLE 8-2
Recreational Exposure Factors
Blackbird Mine Site

Symbol	Definition (units)	Day-User at Upper Blackbird Creek	Day-User at Lower Blackbird Creek
TR	Target Risk	1 x 10⁴	1 x 10⁴
THI	Target Hazard Index	1	1
Atc	Averaging Time -cancer (days)	25,550	25,550
Atno	Averaging Time – noncancer (days)	2,190	2,190
BW	Body Weight - Child (kg)	1 5	15
EF	Exposure Frequency (days/year)	7	14
ET	Exposure Time (hours/day)	2	2
ED	Exposure Duration - child (years)	6	6
Irs	Ingestion Rate - child (mg/day)	300	300
Iradj	Ingestion Rate – age-adjusted (mg-yr/kg-d)	154	154
FI	Fraction Ingested (unitless)	1	1
CF	Conversion Factor (kg/mg)	1 x 10⁵	1 x 10 ⁻⁶
BAF	Bioavailability Factor (unitless)	0.6	0.6
InhRadj	Air Inhalation Rate – age-adjusted (m³- yr/kg-day)	11	11
InhRchild	Air Inhalation Rate - child (m³day)	10	10
1/PEF	1/Particulate Emission Factor (kg/m³)	7.6 x 10 ⁻¹⁰	7.6 x 10 ⁻¹⁰
SCF	Skin Contact Factor-age-adjusted (mg- yr/kg-day)	341	341
Sachild	Skin Surface Area – child (cm²/day)	2,200	2,200
BAF	Bioavailability Factor – arsenic	0.60	0.60
ABS	Absorption Factor (unitless)	0.03	0.03
AF	Adherence Factor - child (mg/cm²)	0.2	0.2

TABLE 10-1
Evaluation Summary for Blackbird Creek Alternatives

ſ 			· · · · · · · · · · · · · · · · · · ·			550
Alternative	BB-1	BB-4	BB-5	BB-6	88-7	. BB-8
Criteria	No Further Action	Meadow Creek Seep Collection; Cap West Fork Tailings Impoundment; Stabilization with Selective Removal of Overbank Deposits; Natural Recovery for In-Stream Sediments	Meadow Creek Seep Collection; Cap West Fork Tailings Impoundment and Treat Tailings Impoundment Seepage; Stabilization with Selective Removal of Overbank Deposits; Natural Recovery for In-Stream Sediments	Meadow Creek Seep Collection; Cap West Fork Tailings Impoundment; Removal with Selective Stabilization of Overbank Deposits; Natural Recovery for In-Stream Sediments	Meadow Creek Seep Collection; Cap West Fork Tailings Impoundment and Treat Tailings Impoundment Seepage; Removal with Selective Stabilization of Overbank Deposits; Natural Recovery for In-Stream Sediments	Meadow Creek Seep Collection; Cap Tailings Impoundment and Treat Tailing: Impoundment Seepage; Complete Removal of Overbank Deposits and In- Stream Sediments
Overall Protection	Not protective of human health or the	Protective of human health. May	Protective of human health. May	Protective of human health. Meets copper	Protective of human health and the	Protective of human health and the
	environment	periodically exceed water quality cleanup goals in Panther Creek. Stabilization of overbank deposits may not provide as good overall protection as alternatives that include more removal.	periodically exceed copper and cobalt cleanup goals in Panther Creek. Stabilization of overbank deposits may not provide as good overall protection as alternatives that include more removal.	cleanup goals in Panther Creek. Uncertainty in terms of meeting cobalt cleanup goals in Panther Creek, and would require years to decades. Removal of overbank deposits likely to provide better overall protection than alternatives that rely primarily on stabilization.	environment. Meets copper and cobalt cleanup goals in Panther Creek. Removal of overbank deposits likely to provide better overall protection than alternatives that rely primarily on stabilization.	environment in long-term. Meets coppe and cobalt cleanup goals in Partitler Creek. This alternative would result is significant short-term impacts to the environment with no significant improvements to water quality.
Compliance with ARARs	Currently does not consistently meet	Periodic exceedance of copper water	Occasional springtime exceedance of	Expected to consistently achieve copper water	Expected to consistently achieve	Expected to consistently achieve copper
	copper water quality standard in Panther Creek. Meets all other ARARs.	quality standard in Panther Creek likely. Maximum mixing zone of 48% for copper and 100% for cobalt in Panther Creek (average conditions). Meets all other ARARs	copper water quality standard in Panther Creek likely. Maximum mixing zone of 48% for copper and 85% for cobalt in Panther Creek (average conditions) Meets all other AFARs.	quality standard in Panther Creek. Maximum mixing zone of 30% for copper and 100% for cobalt in Panther Creek (average conditions) Meets all other ARARs	copper water quality standard in Panther Creek. Maximum mixing zone of 30% for copper and 70% for cobalt in Panther Creek (average conditions) Meets all other ARARs	water quality standard in Panther Creek. Maximum mixing zone of 30% for copper and 65% for cobalt in Panther Creek (average conditions) Meets all other ARARs
Long-Term Effectiveness	Does not consistently meet water	Not expected to consistently achieve	Not expected to consistently achieve	Not expected to consistently achieve water	Expected to consistently achieve	Expected to consistently achieve water
	quality cleanup goals. Existing controls inadequate to protect against residual risks. Not effective in long-term	water quality objectives. Capping at West Fork Impoundment not as reliable or certain as treatment for meeting cobalt cleanup goal in Panther Creek. Physical stabilization not as reliable as removal for overbank deposits.	water quality objectives. Treatment at West Fork Impoundment more reliable and certain than capping for meeting cobalt cleanup goal in Panther Creek. Physical stabilization not as reliable as removal for overbank deposits.	overbank deposits more effective and reliable than physical stabilization.	reliable than physical stabilization.	
Reduction in Toxicity,	No additional treatment provided	Treatment of Meadow Creek	Treatment of Meadow Creek seepage	Treatment of Meadow Creek seepage	Treatment of Meadow Creek	Treatment of Meadow Creek seepage
Mobility, Volume Through Treatment	,	se e page	and Tailings Impoundment seepage	٠.	seepage and Tallings Impoundment seepage	and Tailings Impoundment seepage
Short-Term Effectiveness	Does not create the short-term	Short-term construction risks similar	Short-term construction risks similar for	Short-term construction risks similar for	Short-term construction risks similar	Extensive short-term environmental
	construction risks	for Altematives BB-4 through BB-7.	Alternatives BB-4 through BB-7.	Alternatives BB-4 through BB-7. May require years to a decade or more to achieve cobalt cleanup goals in Panther Creek.	for Alternatives 88-4 through BB-7. Would meet all cleanup goals within 1 to 2 years after implementation.	impacts for up to a decade until riparian vegetation recovers. Would require greatest time to implement (3 or more years).
Implementability	No implementation required	Readily implemented. Physical	Readily implemented. Physical	Readily implemented; less difficult than all		Very difficult to implement. Would require
	4.	stabilization more difficult than removal because large riprap difficult to locate. Capping at West Fork less difficult than treatment.	stabilization more difficult than removal because large riprap difficult to locate. Treatment at West Fork more difficult than capping.	other alternatives except No Further Action	West Fork more difficult than capping.	extensive sediment controls and excavation below the water table. Would require siting of new disposal facility.
Cost (millions, net present value)	\$1.2	\$4.2	\$6.4 to \$9.9 (a)	\$4.6	\$6.8 to \$10.2 (a)	\$52.7 to \$56.2 (a)

⁽a) Costs depend on treatment option for groundwater at the West Fork Tailings Impoundment (see Table 10-4 and Tables 12-1 through 12-3 for details)

TABLE 10-2
Evaluation Summary for Bucktail Creek Alternatives

Alternative	BT-1	BT-3	BT-4	BT-5	BT-6
Criteria	No Further Action	Seep Collection and Treatment; Natural Recovery of Sediments	Seep Collection and Treatment; S. Fork Big Deer Creek Sediment Removal; Natural Recovery of Remaining Sediments	Seep Collection and Treatment, Diversion of Bucktail Creek; Natural Recovery of Sediments	Seep Collection and Treatment; Complete Sediment Removal
Overall Protection	Protective of human health. Would not meet water quality cleanup goals in South Fork or Big Deer Creeks.	Protective of human health. Would meet cleanup goals in Big Deer Creek. Would not meet cleanup goals in So. Fork Big Deer Creek.	Protective of human health. Would meet cleanup goals Big Deer Creek, but not in South Fork. Removal of sediments in So. Fork would not significantly improve time to meet cleanup goals in So. Fork Big Deer Creek.	Protective of human health. Would meet cleanup goals in Big Deer Creek. Diversion of Bucktail Creek would allow cleanup goals to be met in So. Fork Big Deer Creek.	Protective of human health. Would meet cleanup goals Big Deer Creek, but not in South Fork. Removal of all sediments would result in significant short-term impacts to the environment.
Compliance with ARARs	Would not meet copper ARAR in South Fork or Big Deer Creeks. Meets all other ARARs	Would meet copper water quality ARAR in Big Deer Creek, but not in South Fork Creek. Maximum mixing zone for copper in Big Deer Creek is 70 to 100% (average conditions), depending on effectiveness of Bucktail seep collection. Meets all other ARARs	Would meet copper water quality ARAR in Big Deer Creek, but not in South Fork Creek. Maximum mixing zone for copper in Big Deer Creek is 70 to 100% (average conditions), depending on effectiveness of Bucktail seep collection. Meets all other ARARs	Would meet copper ARAR in both South Fork and Big Deer Creeks. Maximum mixing zone for copper in Big Deer Creek is 70 to 100% (average conditions), depending on effectiveness of Bucktail seep collection. Meets all other ARARs	Would meet copper water quality ARAR in Big Deer Creek, but not in South Fork Creek. Maximum mixing zone for copper in Big Deer Creek is 70 to 100% (average conditions), depending on effectiveness of Bucktail seep collection. Meets all other ARARs
Long-Term Effectiveness	Not effective or reliable in long term.	Would be effective and reliable in long-term for meeting cleanup goals in Big Deer Creek. Would not meet cleanup goals in South Fork.	Would be effective and reliable in long- term for meeting cleanup goals in Big Deer Creek. Would not meet cleanup goals in South Fork. Bucktail Creek sediments or water could recontaminate the replacement South Fork sediments.	long-term for meeting cleanup goals in both South Fork and Big Deer Creeks.	Would be effective and reliable in long-term for meeting cleanup goals in Big Deer Creek, Would not meet cleanup goals in South Fork. Bucktail Creek sediments or water could recontaminate the replacement. South Fork and Big Deer Creek sediments
Reduction in Toxicity, Mobility, Volume Through Treatment	No additional treatment provided	Treatment of Bucktail seepage	Treatment of Bucktail seepage	Treatment of Bucktail seepage	Treatment of Bucktail seepage
Short-Term Effectiveness	construction risks	Flushing of Bucktail Creek sediments may result in exceedances of cleanup goals in Big Deer Creek until the sediments are flushed (a). There would be some short term construction risks for seepage collection system.	i-Tushing of Bucktail Creek sediments may result in exceedances of cleanup goals in Big Deer Creek until the sediments are flushed (a). Short term construction risks would be increased to remove sediments from So. Fork Big Deer Creek.	may result in exceedances of cleanup goals in Big Deer Creek until the sediments are flushed (a).	Would meet cleanup goals in Big Deer within 1-2 years of completion. Would not meet cleanup goals in South Fork. Would require 3 to 5 years for construction. Extensive short-term construction impacts to stream channels and riparian vegetation would require decade or more for recovery.
Implementability	No implementation required	There will be some technical challenges intercepting sufficient seepage to meet cleanup goals.	Difficult to implement. Would require extensive sediment controls and excavation below the water table in South Fork. There will be some technical challenges intercepting sufficient seepage to meet cleanup goals.	There will be some technical challenges intercepting sufficient seepage to meet cleanup goals.	Very difficult to implement. Would require extensive sediment controls and excavation below the water table. There will be some technical challenges intercepting sufficient seepage to meet cleanup goals. Would require siting of new disposal facility.
Cost (millions, net present value)	\$1.2	\$4.4	\$5.0	\$4.7	\$11.3

⁽a) The timing for Bucktail Creek sediment flushing is uncertain, but may be years to a decade or more. If water quality cleanup goals are not consistently met in Big Deer Creek in an acceptable time frame, alternatives for contingencies to address water quality will be evaluated.

TABLE 10-3
Evaluation Summary for Panther Creek Alternatives

Alternative	P-1	P-2	
	[' -	P-3
Criteria Overall Protection	No Further Action	Natural Recovery with Institutional Controls and Monitoring	Selective Overbank Deposit Remov
Overall a rotection	Not guaranteed	Overall protection relies on effectiveness of institutional controls and monitoring	Removal of deposits exceeding human health PRGs ensures overs protectiveness
Compliance with ARARs	Yes	Yes	Yes
Long-Term Effectiveness	Potential unacceptable risk under future residential land use scenario.	Effective and reliable for current and future land uses if institutional controls are maintained.	Effective and reliable for current and future land uses.
Reduction in Toxicity, Mobility,	None	None	
Volume Through Treatment	•	none	None
Short-Term Effectiveness	Does not create the short-term risks	Door not essets the diff to	
:	of Alternative P-3.	Does not create the short-term risks of Alternative P-3.	Removal creates potential short-terr risks to the community, site workers and the environment during implementation.
mplementability	No implementation required	Implementable as long as an appropriate entity is willing to serve as grantee of the land restriction instrument(s) and private property owners are willing to accept ICs.	Readily implemented
ost (millions, net present value)	\$0.0	\$0.4	\$1.6

NOTE: Water quality improvements in Panther Creek determined by alternatives selected for Blackbird Creek and for Bucktail Creek.

TABLE 10-4 SUMMARY OF ESTIMATED ALTERNATIVE COSTS

	Alternative	Estimated Costs (millions) ^a			
		Capital	Annual b	Total	
	Blackbird Creek (incl. Tailings				
BB-1	No Further Action	\$0.0	\$1.2	\$1.2	
BB-4	marati didan dap dandadin, dap traati din tallinga	\$2.1	\$2.0	\$4.2	
	Impoundment; Stabilization with Selective Removal of Overbank		. }		
	Deposits; Natural Recovery for In-Stream Sediments				
BB- 5	Meadow Creek Seep Collection; Cap West Fork Tailings				
	Impoundment and Treat Tailings Impoundment Seepage;				
	Stabilization with Selective Removal of Overbank Deposits;	•			
	Natural Recovery for In-Stream Sediments				
a '	Treat Tailings Impoundment Seepage with Passive In-Situ	\$3.2	\$3.2	\$6.4	
þ	Treat Tailings Impoundment Seepage with Active In-Situ	\$4.7	\$4.8	\$9.5	
С	Treat Tailings Impoundment Seepage at WTP	\$ 5.3	\$4.5	\$9.9	
BB-6	Meadow Creek Seep Collection; Cap West Fork Tailings	\$2.7	\$1.9	\$4.6	
	Impoundment; Removal with Selective Stabilization of Overbank				
	Deposits; Natural Recovery for In-Stream Sediments				
BB-7	model of the state			·	
	Impoundment and Treat Tailings Impoundment Seepage;		}		
	Removal with Selective Stabilization of Overbank Deposits;				
	Natural Recovery for In-Stream Sediments				
а	Treat Tailings Impoundment Seepage with Passive In-Situ	\$3.7	\$3.0	\$6.8	
b	Treat Tailings Impoundment Seepage with Active In-Situ	\$5.2	\$4.7	\$9.9	
C	Treat Tailings Impoundment Seepage at WTP	\$ 5.9	\$4.4	\$10.2	
BB-8	Meadow Creek Seep Collection, Cap West Fork Tailings				
	Impoundment and Treat Tailings Impoundment Seepage; Complete Removal of Overbank Deposits and In-Stream		1		
	Sediments				
а	Treat Tailings Impoundment Seepage with Passive In-Situ	\$49.1	\$3.7	\$52.7	
b	Treat Tailings Impoundment Seepage with Active In-Situ	\$50.5	\$5.3	\$55.8	
С	Treat Tailings Impoundment Seepage at WTP	\$51.2	\$5.0	\$56.2	
	Bucktail, S. Fork Big Deer, and E	Big Deer Creeks			
	No Further Action	\$0.0	\$1.2	\$1.2	
BT-3	Seep Collection and Treatment; Natural Recovery of Sediments	\$2.0	\$2.4	\$4.4	
BT-4	Seep Collection and Treatment; S. Fork Big Deer Creek	\$2.6	\$2.4	\$5.0	
	Sediment Removal; Natural Recovery of Remaining Sediments				
BT-5	Seep Collection and Treatment; Diversion of Bucktail Creek;	. \$2.3	\$2.4	\$4.7	
	Natural Recovery of Sediments				
81-0	Seep Collection and Treatment; Complete Sediment Removal	\$8.4	\$2.9	\$11.3	
	Panther Creek		<u></u>	· 	
P-1	No Further Action	\$0.0	\$0.0	\$0.0	
P-2	Natural Recovery with Institutional Controls and Monitoring	\$0.1	\$0.3	\$0.4	
P-3	Selective Overbank Deposit Removal; Natural Recovery of In- Stream Sediments	\$1.4	\$0.2	\$1.6	

Costs are for early 2002.

Net present value of future costs (O&M monitoring) at 7% discount rate for 30 years.

TABLE 12-1
ESTIMATED COST FOR ALTERNATIVE BB-7a

			Unit		
ltem	Quantity	Units	Cost	Cost *	Notes
APITAL COSTS					
Collect Meadow Creek seeps				\$116,000	See FS Table E-18
Tailings Impoundment soil cover - grading	11.4	ac	\$5,000	\$57,000	Material already placed
Revegetation for soil cover	11.4	ac	\$2,000	\$22.800	Impoundment area less creek channel
Treatment of Tailings Impoundment seepage	,,,,		42 ,000	\$802,000	In-situ sorption; 50% removal; FS Table E-22
Armoring of overbank deposits	2,900	су	\$40	\$116,000	Vol. estimated from FS Chapter 6 figures
Removal of selected overbank deposits	37,000	cy	\$20	\$740,000	Vol. estimated from FS Chapter 6 figures
Armoring residual above human health PRG	1,000	cy	\$40	\$40,000	Allowance
Channel for Blackbird Creek near PCI		-,	*	\$29,000	See FS Table E-23
Establish institutional controls				\$50,000	Allowance
Subtotal				\$1,972,800	, mondings
Contractor overhead and profit			20%	\$395,000	
Engineering and construction surveillance			25%	\$493,000	
Agency oversight			10%	\$197,000	
Project management and legal			10%	\$197,000	
Contingency			25%	\$493,000	
TOTAL CAPITAL COSTS				\$3,747,800	
PERATIONS AND MAINTENANCE COSTS				Present value /	calculation, 7% net interest
Tailings Impoundment soil cover maintenance	30	. yr	\$4,000	\$50.000	Allowance
Meadow Creek treatment	30	γr	\$20,000	\$248,000	Diversion option; see FS Table E-18
Tailings Impoundment seepage treatment	30	yr 1V	\$67,000	\$831,000	See FS Table E-22
Inspection and monitoring of armoring	30	λι `	\$10,000	\$124,000	Allowance
Maintenance of existing fencing	30	yr	\$1,000	\$12,000	Allowance
Sediment cleanout of Blackbird channel near PCI	30	yr yr	\$4,000	\$50,000	Allowance for infrequent event
Monitoring and reporting (see Table E-29)	30	vr	0.,000	\$850,000	Present value cost of cash flow
Subtotal				\$2,165,000	Troom value cost of cash now
Project management			5%	\$108,000	
Agency oversight			10%	\$217,000	
Contingency			25%	\$541,000	
NET PRESENT VALUE O&M COST				\$3,031,000	
OTAL ALTERNATIVE COST				\$6,778,800	Net present value b

^a Costs are for early 2002. Costs do not included current O&M costs.

^b The sum of capital costs and the net present value of long-term O&M costs.

ESTIMATED COST FOR ALTERNATIVE BB-7b

Unit							
. Item	Quantity	Units	Cost	Cost *	Notes		
CAPITAL COSTS							
Collect Meadow Creek seeps				\$116,000	See FS Table E-18		
Tailings Impoundment soil cover - grading	11.4	ac	\$5,000	\$57,000	Material already placed		
Revegetation for soil cover	11.4	ac	\$2,000	\$22,800	Impoundment area less creek channel		
Treatment of Tailings Impoundment seepage			,-,	\$1,570,000	In-situ package treatment plant; See FS Table E-21		
Armoring of overbank deposits	2,900	су	\$40	\$116,000	Vol. estimated from FS Chapter 6 figures		
Removal of selected overbank deposits	37,000	сý	\$20	\$740,000	Vol. estimated from FS Chapter 6 figures		
Armoring residual above human health PRG	1,000	cv	\$40	\$40,000	Allowance		
Channel for Blackbird Creek near PCI		•	• -	\$29,000	See FS Table E-23		
Establish institutional controls				\$50,000	Allowance		
Subtotal				\$2,740,800			
Contractor overhead and profit			20%	\$548,000			
Engineering and construction surveillance			25%	\$685,000			
Agency oversight			10%	\$274,000			
Project management and legal			10%	\$274,000	·		
Contingency			25%	\$685,000			
TOTAL CAPITAL COSTS				\$5,206,800	•		
OPERATIONS AND MAINTENANCE COSTS			1	Present value (calculation, 7% net interest		
Tailings Impoundment soil cover maintenance	30	yr	\$4,000		Allowance		
Meadow Creek treatment	30	yr yr	\$20,000	\$248,000	Diversion option; see FS Table E-18		
Tailings Impoundment seepage treatment	30	yr yr	\$161,000	\$1,998,000	See FS Table E-20		
Inspection and monitoring of armoring	30	yr	\$10,000	\$124,000	Allowance		
Maintenance of existing fencing	30	yr	\$1,000	\$12,000	Allowance		
Sediment cleanout of Blackbird channel near PCI	30	yr yr	\$4,000	\$50,000	Allowance for infrequent event		
Monitoring and reporting (see Table E-29)	30	yr	4 1,225	\$850,000	Present value cost of cash flow		
Subtotal				\$3,332,000			
Project management			5%	\$167,000			
Agency oversight			10%	\$333,000	· ·		
Contingency			25%	\$833,000	·		
NET PRESENT VALUE O&M COST				\$4,665,000			
TOTAL ALTERNATIVE COST				\$9,871,800	Net present value b		

Costs are for early 2002. Costs do not included current O&M costs.
 The sum of capital costs and the net present value of long-term O&M costs.

TABLE 12-3
ESTIMATED COSTS FOR ALTERNATIVE BB-7c

			Unit		
ltem	Quantity	Units	Cost	Cost *	Notes
APITAL COSTS					
Collect Meadow Creek seeps				\$116,000	See FS Table E-18
Tailings Impoundment soil cover - grading	11.4	ac	\$5,000	\$57,000	
Revegetation for soil cover	11.4	ac	\$2,000	\$22,800	· · · · · · · · · · · · · · · · · · ·
Treatment of Tailings Impoundment seepage				\$1,920,000	,
Armoring of overbank deposits	2,900	су	\$40	\$116,000	
Removal of selected overbank deposits	37,000	сy	\$20	\$740,000	Vol. estimated from FS Chapter 6 figures
Armoring residual above human health PRG	1,000	сy	\$40	\$40,000	Allowance
Channel for Blackbird Creek near PCI		•		\$29,000	See FS Table E-23
Establish institutional controls				\$50,000	Allowance
Subtotal				\$3,090,800	
Contractor overhead and profit			20%	\$618,000	
Engineering and construction surveillance			25%	\$773,000	
Agency oversight			10%	\$309,000	
Project management and legal			10%	\$309,000	
Contingency			25%	\$773,000	
TOTAL CAPITAL COSTS				\$5,872,800	
PERATIONS AND MAINTENANCE COSTS				Present value o	calculation, 7% net interest
Tailings Impoundment soil cover maintenance	30	γr	\$4,000		Allowance
Meadow Creek treatment	30	yr	\$20,000	\$248,000	Diversion option; see FS Table E-18
Tailings Impoundment seepage treatment	30	٧r	\$144,000		See FS Table E-20
Inspection and monitoring of armoring	30	уr	\$10,000	\$124,000	Allowance
Maintenance of existing fencing	30	уr	\$1,000	\$12,000	Allowance
Sediment cleanout of Blackbird channel near PCI	30	yr	\$4,000	\$50,000	Allowance for infrequent event
Monitoring and reporting (see Table E-29)	30	٧r	V ., 000	\$850,000	Present value cost of cash flow
Subtotal	-			\$3,121,000	
Project management			5%	\$156,000	
Agency oversight	·		10%	\$312,000	
Contingency			25%	\$780,000	
NET PRESENT VALUE O&M COST				\$4,369,000	
TAL ALTERNATIVE COST				\$10,241,800	Net present value ^b

^a Costs are for early 2002. Costs do not included current O&M costs.

^b The sum of capital costs and the net present value of long-term O&M costs.

TABLE 12-4
ESTIMATED COST FOR ALTERNATIVE BT-5

			Unit	**************************************	
ltem	Quantity	Units	Cost	Cost ^a	Notes
APITAL COSTS					
Collection and treatment of Bucktail Creek seeps				\$190,000	Phase 1; see FS Table E-24
Collection and treatment of Bucktail Creek seeps				\$879,000	Phase 2; see FS Table E-25
Divert Bucktail Creek directly to Big Deer Creek	3,400	i f	\$45	\$153,000	24-inch HDPE pipe
Flow Splitter				\$10,000	Estimate
Diffuser				\$30,000	Discharge into Big Deer Creek
Subtotal				\$1,222,000	
Contractor overhead and profit			20%	\$244,000	
Engineering and construction surveillance			25%	\$306,000	• •
Agency oversight			10%	\$122,000	
Project management and legal			10%	\$122,000	•
Contingency			25%	\$306,000	₹
TOTAL CAPITAL COSTS				\$2,322,000	
PERATIONS AND MAINTENANCE COSTS			İ	Present value o	calculation, 7% net interest
Collection and treatment of Bucktail Creek seeps	30	уг	\$39,000		Phase 1, see FS Table E-24
Collection and treatment of Bucktail Creek seeps	30	ýΓ	\$25,000	\$310,000	
Sediment dam maintenance or removal		,		\$50,000	Allowance
Monitoring and reporting (see Table E-29)	30	yr		\$850,000	Present value cost of cash flow
Subtotal				\$1,694,000	
Project management	-		5%	\$85,000	
Agency oversight			10%	\$169,000	
Contingency			25%	\$424,000	
NET PRESENT VALUE 0&M COST				\$2,372,000	
OTAL ALTERNATIVE COST				\$4,694,000	Net present value ^b

^a Costs are for early 2002. Costs do not included current O&M costs.

^b The sum of capital costs and the net present value of long-term O&M costs.

TABLE 12-5
ESTIMATED COST FOR COMBINED ALTERNATIVES P-2/P-3

				Unit		
ltem		Quantity	Units	Cost	Cost ^a	Notes
CAPITAL COSTS						
Establish instutional controls					\$40,000	Allowance
Selective removal - Rufe		800		\$50	\$40,000	Vol. estimated from FS Chapter 6 figures
Selective removal - Strawn		300		\$50	\$15,000	Vol. estimated from FS Chapter 6 figures
	Subtotal	1,100		 -	\$95,000	and the second s
Contractor overhead and profit				20%	\$19,000	
Engineering and construction surveillance				25%	\$24,000	
Agency oversight				10%	\$10,000	
Project management and legal				10%	\$10,000	
Contingency				25%	\$24,000	
TOTAL CAPITAL COSTS					\$182,000	
OPERATIONS AND MAINTENANCE COSTS						
Institutional controls monitoring (allowance)		30	y٢	\$5,000	\$62,000	Present value cost of cash flow
Monitoring and reporting (see Table E-29)		30	VΓ	\$10,000	\$124,000	Present value cost of cash flow
	Subtotal			<u> </u>	\$186,000	Troopin value dost of dash now
Project management				5%	\$9,000	
Agency oversight				10%	\$19,000	
Contingency				25%	\$47,000	
NET PRESENT VALUE O&M COST	_				\$261,000	
TOTAL ALTERNATIVE COST					\$443,000	Net present value ^b

^a Costs are for early 2002.

]

^b The sum of capital costs and the net present value of long-term O&M costs.